Sampling inequalities affect generalization of neuroimaging-based ... - BMC Medicine

  • Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60.

    Article  CAS  PubMed  Google Scholar 

  • Eyre HA, Singh AB, Reynolds C 3rd. Tech giants enter mental health. World Psychiatry. 2016;15(1):21–2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walter M, Alizadeh S, Jamalabadi H, Lueken U, Dannlowski U, Walter H, Olbrich S, Colic L, Kambeitz J, Koutsouleris N, et al. Translational machine learning for psychiatric neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry. 2019;91:113–21.

    Article  PubMed  Google Scholar 

  • Rutherford S. The promise of machine learning for psychiatry. Biol Psychiatry. 2020;88(11):e53–5.

    Article  PubMed  Google Scholar 

  • Sui J, Jiang R, Bustillo J, Calhoun V. Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: methods and promises. Biol Psychiatry. 2020;88(11):818–28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bzdok D, Varoquaux G, Steyerberg EW. Prediction, not association, paves the road to precision medicine. JAMA Psychiat. 2021;78(2):127–8.

    Article  Google Scholar 

  • Vayena E, Blasimme A. A systemic approach to the oversight of machine learning clinical translation. Am J Bioeth. 2022;22(5):23–5.

    Article  PubMed  Google Scholar 

  • Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiat. 2020;77(5):534–40.

    Article  Google Scholar 

  • Nielsen AN, Barch DM, Petersen SE, Schlaggar BL, Greene DJ. Machine learning with neuroimaging: evaluating its applications in psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5(8):791–8.

    PubMed  Google Scholar 

  • Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. Neuroimage. 2017;145(Pt B):166–79.

    Article  PubMed  Google Scholar 

  • Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches for clinical psychology and psychiatry. Annu Rev Clin Psychol. 2018;14:91–118.

    Article  PubMed  Google Scholar 

  • Mihalik A, Ferreira FS, Moutoussis M, Ziegler G, Adams RA, Rosa MJ, Prabhu G, de Oliveira L, Pereira M, Bullmore ET, et al. Multiple holdouts with stability: improving the generalizability of machine learning analyses of brain-behavior relationships. Biol Psychiatry. 2020;87(4):368–76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meehan AJ, Lewis SJ, Fazel S, Fusar-Poli P, Steyerberg EW, Stahl D, Danese A. Clinical prediction models in psychiatry: a systematic review of two decades of progress and challenges. Mol Psychiatry. 2022;27(6):2700–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Ran X, Liu K, Yao C, Yao Y, Wu H, Liu Q. Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: A review. J Neurosci Methods. 2022;368:109441.

    Article  CAS  PubMed  Google Scholar 

  • Davatzikos C. Machine learning in neuroimaging: Progress and challenges. Neuroimage. 2019;197:652–6.

    Article  PubMed  Google Scholar 

  • Shrout PE, Rodgers JL. Psychology, science, and knowledge construction: broadening perspectives from the replication crisis. Annu Rev Psychol. 2018;69:487–510.

    Article  PubMed  Google Scholar 

  • Maxwell SE, Lau MY, Howard GS. Is psychology suffering from a replication crisis? What does "failure to replicate" really mean? Am Psychol. 2015;70(6):487–98.

    Article  PubMed  Google Scholar 

  • Henrich J, Heine SJ, Norenzayan A. Most people are not WEIRD. Nature. 2010;466(7302):29.

    Article  CAS  PubMed  Google Scholar 

  • Muthukrishna M, Bell AV, Henrich J, Curtin CM, Gedranovich A, McInerney J, Thue B. Beyond Western, Educated, Industrial, Rich, and Democratic (WEIRD) psychology: measuring and mapping scales of cultural and psychological distance. Psychol Sci. 2020;31(6):678–701.

    Article  PubMed  Google Scholar 

  • Rad MS, Martingano AJ, Ginges J. Toward a psychology of Homo sapiens: making psychological science more representative of the human population. Proc Natl Acad Sci U S A. 2018;115(45):11401–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnett JJ. The neglected 95%: why American psychology needs to become less American. Am Psychol. 2008;63(7):602–14.

    Article  PubMed  Google Scholar 

  • Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, et al. Evaluation of risk of bias in neuroimaging-based artificial intelligence models for psychiatric diagnosis: a systematic review. JAMA Netw Open. 2023;6(3):e231671.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cearns M, Hahn T, Baune BT. Recommendations and future directions for supervised machine learning in psychiatry. Transl Psychiatry. 2019;9(1):271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari P, Verma R. The pursuit of generalizability to enable clinical translation of radiomics. Radiol Artif Intell. 2021;3(1):e200227.

    Article  PubMed  Google Scholar 

  • Wolfers T, Doan NT, Kaufmann T, Alnæs D, Moberget T, Agartz I, Buitelaar JK, Ueland T, Melle I, Franke B, et al. Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiat. 2018;75(11):1146–55.

    Article  Google Scholar 

  • Schultebraucks K, Choi KW, Galatzer-Levy IR, Bonanno GA. Discriminating heterogeneous trajectories of resilience and depression after major life stressors using polygenic scores. JAMA Psychiat. 2021;78(7):744–52.

    Article  Google Scholar 

  • Lee HB, Lyketsos CG. Depression in Alzheimer's disease: heterogeneity and related issues. Biol Psychiatry. 2003;54(3):353–62.

    Article  CAS  PubMed  Google Scholar 

  • Arguello PA, Gogos JA. Genetic and cognitive windows into circuit mechanisms of psychiatric disease. Trends Neurosci. 2012;35(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  • Ying X. An overview of overfitting and its solutions. J Phys: Conf Ser. 2019;1168(2):022022.

    Google Scholar 

  • Peng Y, Nagata MH. An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data. Chaos, Solitons Fractals. 2020;139:110055.

    Article  PubMed  Google Scholar 

  • Andaur Navarro CL, Damen JAA, Takada T, Nijman SWJ, Dhiman P, Ma J, Collins GS, Bajpai R, Riley RD, Moons KGM, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ. 2021;375:n2281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseini M, Powell M, Collins J, Callahan-Flintoft C, Jones W, Bowman H, Wyble B. I tried a bunch of things: the dangers of unexpected overfitting in classification of brain data. Neurosci Biobehav Rev. 2020;119:456–67.

    Article  PubMed  Google Scholar 

  • Varoquaux G, Cheplygina V. Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digit Med. 2022;5(1):48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varoquaux G. Cross-validation failure: small sample sizes lead to large error bars. Neuroimage. 2018;180(Pt A):68–77.

    Article  PubMed  Google Scholar 

  • Chen J, Patil KR, Yeo BTT, Eickhoff SB. Leveraging machine learning for gaining neurobiological and nosological insights in psychiatric research. Biol Psychiatry. 2023;93(1):18–28.

    Article  PubMed  Google Scholar 

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, Reitsma JB, Collins GS. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11(10):e1001744.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.

    Article  PubMed  Google Scholar 

  • Nam CW. World Economic Outlook for 2020 and 2021. CESifo Forum. 2020;21(2):58-9. https://www.proquest.com/openview/2b714d1282ff098661c0d252c4db128b/1?cbl=43805&pq-origsite=gscholar&parentSessionId=7a4xwuy%2B60cPGopgOGEQ6SUez3gxXxwiOjjkxULCRuI%3D.

  • How does the world bank classify countries? https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2741183.

  • Dagum C. A new approach to the decomposition of the Gini income inequality ratio. Empir Econ. 1997;22:515–31.

    Article  Google Scholar 

  • Hamed KH, Ramachandra Rao A. A modified Mann-Kendall trend test for autocorrelated data. J Hydrol. 1998;204(1):182–96.

    Article  Google Scholar 

  • Battle DE. Diagnostic and Statistical Manual of Mental Disorders (DSM). CoDAS. 2013;25(2):191–2.

    PubMed  Google Scholar 

  • Huang Y, Wang Y, Wang H, Liu Z, Yu X, Yan J, Yu Y, Kou C, Xu X, Lu J, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry. 2019;6(3):211–24.

    Article  PubMed  Google Scholar 

  • Ormel J, VonKorff M. Reducing common mental disorder prevalence in populations. JAMA Psychiat. 2021;78(4):359–60.

    Article  Google Scholar 

  • Flint C, Cearns M, Opel N, Redlich R, Mehler DMA, Emden D, Winter NR, Leenings R, Eickhoff SB, Kircher T, et al. Systematic misestimation of machine learning performance in neuroimaging studies of depression. Neuropsychopharmacology. 2021;46(8):1510–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017;20(3):365–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB, Logullo P, Beam AL, Peng L, Van Calster B, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021;11(7):e048008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafò MR, Nichols TE, Poline JB, Vul E, Yarkoni T. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat Rev Neurosci. 2017;18(2):115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoth IS, Lajnef T, Rigoulot S, Lacourse K, Vannasing P, Michaud JL, Jacquemont S, Major P, Jerbi K, Lippé S. Auditory repetition suppression alterations in relation to cognitive functioning in fragile X syndrome: a combined EEG and machine learning approach. J Neurodev Disord. 2018;10(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen M, Curwood EK, Archer JS, Abbott DF, Jackson GD. Brain regions with abnormal network properties in severe epilepsy of Lennox-Gastaut phenotype: multivariate analysis of task-free fMRI. Epilepsia. 2015;56(11):1767–73.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yuan L, Shi J, Greve A, Ye J, Toga AW, Reiss AL, Thompson PM. Applying tensor-based morphometry to parametric surfaces can improve MRI-based disease diagnosis. Neuroimage. 2013;74:209–30.

    Article  PubMed  Google Scholar 

  • Hoeft F, Walter E, Lightbody AA, Hazlett HC, Chang C, Piven J, Reiss AL. Neuroanatomical differences in toddler boys with fragile x syndrome and idiopathic autism. Arch Gen Psychiatry. 2011;68(3):295–305.

    Article  PubMed  Google Scholar 

  • Parisot S, Ktena SI, Ferrante E, Lee M, Guerrero R, Glocker B, Rueckert D. Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer's disease. Med Image Anal. 2018;48:117–30.

    Article  PubMed  Google Scholar 

  • Matlis S, Boric K, Chu CJ, Kramer MA. Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism. BMC Neurol. 2015;15:97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingalhalikar M, Parker D, Bloy L, Roberts TP, Verma R. Diffusion based abnormality markers of pathology: toward learned diagnostic prediction of ASD. Neuroimage. 2011;57(3):918–27.

    Article  PubMed  Google Scholar 

  • Shahamat H, Saniee Abadeh M. Brain MRI analysis using a deep learning based evolutionary approach. Neural Netw. 2020;126:218–34.

    Article  PubMed  Google Scholar 

  • Bajestani GS, Behrooz M, Khani AG, Nouri-Baygi M, Mollaei A. Diagnosis of autism spectrum disorder based on complex network features. Comput Methods Programs Biomed. 2019;177:277–83.

    Article  PubMed  Google Scholar 

  • Lanka P, Rangaprakash D, Dretsch MN, Katz JS, Denney TS Jr, Deshpande G. Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets. Brain Imaging Behav. 2020;14(6):2378–416.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang XH, Li L. Diagnosing autism spectrum disorder using brain entropy: a fast entropy method. Comput Methods Programs Biomed. 2020;190:105240.

    Article  PubMed  Google Scholar 

  • Rakić M, Cabezas M, Kushibar K, Oliver A, Lladó X. Improving the detection of autism spectrum disorder by combining structural and functional MRI information. NeuroImage Clin. 2020;25:102181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmadlou M, Adeli H, Adeli A. Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J Clin Neurophysiol. 2010;27(5):328–33.

    Article  PubMed  Google Scholar 

  • Libero LE, DeRamus TP, Lahti AC, Deshpande G, Kana RK. Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates. Cortex. 2015;66:46–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pham TH, Vicnesh J, Wei JKE, Oh SL, Arunkumar N, Abdulhay EW, Ciaccio EJ, Acharya UR. Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG Signals. Int J Environ Res Public Health. 2020;17(3):971.

    Article  PubMed  PubMed Central  Google Scholar 

  • Graa O, Rekik I. Multi-view learning-based data proliferator for boosting classification using highly imbalanced classes. J Neurosci Methods. 2019;327:108344.

    Article  PubMed  Google Scholar 

  • Ingalhalikar M, Smith AR, Bloy L, Gur R, Roberts TP, Verma R. Identifying sub-populations via unsupervised cluster analysis on multi-edge similarity graphs. Med Image Comput Comput Assist Interv. 2012;15(Pt 2):254–61.

    PubMed  PubMed Central  Google Scholar 

  • Khosla M, Jamison K, Kuceyeski A, Sabuncu MR. Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction. Neuroimage. 2019;199:651–62.

    Article  PubMed  Google Scholar 

  • Li H, Parikh NA, He L. A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front Neurosci. 2018;12:491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sen B, Borle NC, Greiner R, Brown MRG. A general prediction model for the detection of ADHD and Autism using structural and functional MRI. PLoS One. 2018;13(4):e0194856.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Hua Q, Yu J, Li J. Classification of autism spectrum disorder based on sample entropy of spontaneous functional near infra-red spectroscopy signal. Clin Neurophysiol. 2020;131(6):1365–74.

    Article  PubMed  Google Scholar 

  • Ma X, Wang XH, Li L. Identifying individuals with autism spectrum disorder based on the principal components of whole-brain phase synchrony. Neurosci Lett. 2021;742:135519.

    Article  CAS  PubMed  Google Scholar 

  • Rakhimberdina Z, Liu X, Murata AT. Population graph-based multi-model ensemble method for diagnosing autism spectrum disorder. Sensors (Basel). 2020;20(21):6001.

    Article  PubMed  Google Scholar 

  • Tsiaras V, Simos PG, Rezaie R, Sheth BR, Garyfallidis E, Castillo EM, Papanicolaou AC. Extracting biomarkers of autism from MEG resting-state functional connectivity networks. Comput Biol Med. 2011;41(12):1166–77.

    Article  PubMed  Google Scholar 

  • Wang H, Chen C, Fushing H. Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders. PLoS One. 2012;7(10):e45502.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J, Cao L, Li T, Liao B, Dong S, Li P. Interpretable learning approaches in resting-state functional connectivity analysis: the case of autism spectrum disorder. Comput Math Methods Med. 2020;2020:1394830.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung M, Tu Y, Park J, Jorgenson K, Lang C, Song W, Kong J. Surface-based shared and distinct resting functional connectivity in attention-deficit hyperactivity disorder and autism spectrum disorder. Br J Psychiatry. 2019;214(6):339–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clinical. 2018;17:16–23.

    Article  PubMed  Google Scholar 

  • Bhaumik R, Pradhan A, Das S, Bhaumik DK. Predicting autism spectrum disorder using domain-adaptive cross-site evaluation. Neuroinformatics. 2018;16(2):197–205.

    Article  PubMed  Google Scholar 

  • Wang L, Wee CY, Tang X, Yap PT, Shen D. Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder. Brain Imaging Behav. 2016;10(1):33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ecker C, Rocha-Rego V, Johnston P, Mourao-Miranda J, Marquand A, Daly EM, Brammer MJ, Murphy C, Murphy DG. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage. 2010;49(1):44–56.

    Article  PubMed  Google Scholar 

  • Payabvash S, Palacios EM, Owen JP, Wang MB, Tavassoli T, Gerdes M, Brandes-Aitken A, Cuneo D, Marco EJ, Mukherjee P. White matter connectome edge density in children with autism spectrum disorders: potential imaging biomarkers using machine-learning models. Brain Connect. 2019;9(2):209–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Price T, Wee CY, Gao W, Shen D. Multiple-network classification of childhood autism using functional connectivity dynamics. Med Image Comput Comput Assist Interv. 2014;17(Pt 3):177–84.

    PubMed  Google Scholar 

  • Haweel R, Shalaby A, Mahmoud A, Seada N, Ghoniemy S, Ghazal M, Casanova MF, Barnes GN, El-Baz A. A robust DWT-CNN-based CAD system for early diagnosis of autism using task-based fMRI. Med Phys. 2021;48(5):2315–26.

    Article  PubMed  Google Scholar 

  • Chen CP, Keown CL, Jahedi A, Nair A, Pflieger ME, Bailey BA, Müller RA. Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. NeuroImage Clin. 2015;8:238–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson JS, Nielsen JA, Froehlich AL, DuBray MB, Druzgal TJ, Cariello AN, Cooperrider JR, Zielinski BA, Ravichandran C, Fletcher PT, et al. Functional connectivity magnetic resonance imaging classification of autism. Brain. 2011;134(Pt 12):3742–54.

    Article  PubMed  Google Scholar 

  • Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinstein C, Ryali S, Menon V. Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiat. 2013;70(8):869–79.

    Article  Google Scholar 

  • Nielsen JA, Zielinski BA, Fletcher PT, Alexander AL, Lange N, Bigler ED, Lainhart JE, Anderson JS. Multisite functional connectivity MRI classification of autism: ABIDE results. Front Hum Neurosci. 2013;7:599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahedi A, Nasamran CA, Faires B, Fan J, Müller RA. Distributed intrinsic functional connectivity patterns predict diagnostic status in Large Autism Cohort. Brain Connect. 2017;7(8):515–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Retico A, Giuliano A, Tancredi R, Cosenza A, Apicella F, Narzisi A, Biagi L, Tosetti M, Muratori F, Calderoni S. The effect of gender on the neuroanatomy of children with autism spectrum disorders: a support vector machine case-control study. Mol Autism. 2016;7:5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calderoni S, Retico A, Biagi L, Tancredi R, Muratori F, Tosetti M. Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses. Neuroimage. 2012;59(2):1013–22.

    Article  PubMed  Google Scholar 

  • Yamagata B, Itahashi T, Fujino J, Ohta H, Nakamura M, Kato N, Mimura M, Hashimoto RI, Aoki Y. Machine learning approach to identify a resting-state functional connectivity pattern serving as an endophenotype of autism spectrum disorder. Brain Imaging Behav. 2019;13(6):1689–98.

    Article  PubMed  Google Scholar 

  • Gori I, Giuliano A, Muratori F, Saviozzi I, Oliva P, Tancredi R, Cosenza A, Tosetti M, Calderoni S, Retico A. Gray matter alterations in young children with autism spectrum disorders: comparing morphometry at the voxel and regional level. J Neuroimaging. 2015;25(6):866–74.

    Article  PubMed  Google Scholar  ...

  • Comments

    Popular posts from this blog

    His Apple Watch warned of an irregular heart rate. Turns out he was having a heart attack | Globalnews.ca - Global News Toronto

    “A Runner Suddenly Developed Asthma. It Was Stranger Than It Seemed. - The New York Times” plus 1 more

    “Opioids in America, Part 3: The other side of the crisis - Greeley Tribune” plus 1 more